Generation and Characterization of Rhodium Carbonyls Formed on Silica and Alumina under Mild Conditions

MICHAEL P. KEYES¹ AND KENNETH L. WATTERS²

Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201

Received April 1, 1987; revised September 22, 1987

The effect of the metal precursor on the surface structure of rhodium supported on SiO₂ and Al_2O_3 and treated under very mild conditions was examined. For both SiO₂ and Al₂O₃ supports, the mild conditions used produced samples with properties different from those that have heretofore been reported. Rh(I) on SiO₂ was obtained by sublimation of [Rh(CO)₂Cl]₂ and by mild reduction under CO of RhCl₃/SiO₂ and of Rh(NO₃)₃/SiO₂. In each case, three ν (CO) IR bands (two strong and one weak) were obtained with frequency and intensity patterns that closely matched those for molecular dirhodium complexes such as [Rh(CO)₂Cl]₂ and [Rh(CO)₂OSiMe₃]₂, indicating a dinuclear structure on the SiO_2 surface. Solvent extraction results led to the conclusion that if a dicarbonyl species was generated with $Rh(NO_3)_3/SiO_2$ it was in the form $[Rh(CO_2O_3)_2$ (where O_3 is a surface oxide), while direct sublimation of [Rh(CO)₂Cl]₂ onto SiO₂ and reduction of RhCl₃/SiO₂ both formed physisorbed [Rh(CO)₂Cl]₂ that could be extracted readily from the surface into pentane. The [Rh(CO)₂Cl]₂ absorbed on pretreated Al₂O₃ behaved differently. Three ν (CO) IR bands initially evident (two strong and one weak) displayed a pattern different from that for the parent dirhodium complex. The weak band vanished within an hour while the two strong bands remained. The remaining bands were indistinguishable from the ν (CO) bands reported for monomeric surface Rh¹(CO)₂ species derived from RhCl₃/Al₂O₃ and Rh(NO₃)₃/Al₂O₃, while the short-lived species identified with the weak band is proposed to be a monocarbonyl of Rh(I). Pretreatment of the Al_2O_3 at 800°C produced a sample with shifted ν (CO) bands and color much different from that for other samples studied. The formation of the proposed monocarbonyl and the different behavior after 800°C pretreatment are discussed in terms of the role of Cl and Lewis acid sites. © 1988 Academic Press, Inc.

INTRODUCTION

Precise control of the factors influencing reaction rates and selectivities in heterogeneous catalytic reactions is an important goal in the field of surface science. For heterogeneous catalysts consisting of transition metal species supported on oxide surfaces, observed reactivities and selectivities frequently depend on the form in which the transition metal is deposited. The catalytic properties sometimes differ for catalyst samples prepared from metal salts as compared with those from organometallic complexes. A recent example is the significantly lower rate of CO_2 hydrogenation for Al_2O_3 -supported RuCl₃ than that with ruthenium carbonyl complexes on Al_2O_3 (1). Chloride incorporation into the metal– surface interactions for the catalyst prepared with RuCl₃ was thought to play an important role in determining the properties of that catalyst.

Many organometallic and metal carbonyl precursors of supported transition metal catalysts can be added to a support from the vapor phase. This allows for pretreatment of a support surface prior to addition of the catalyst precursor metal complex, with the pretreated surface remaining unaffected by exposure to solvent and/or atmosphere during addition of the metal. The complex itself then can be treated under

¹ Present address: School of Chemical Science, Box 28 Noyes Lab, University of Illinois, Urbana, IL 61801.

² To whom correspondence should be addressed.

very mild conditions after its addition to the surface in order to develop the desired catalyst. A significant question is the extent to which supported metal catalysts formed in this manner differ chemically or catalytically from those formed by mild reduction of a deposited metal salt.

Differences in catalyst samples prepared from different salts of the same metal also have been observed. RhCl₃ and Rh(NO₃)₃ were found to produce different relative amounts of Rh(0) and Rh(I) after reduction on Al₂O₃ (2) and displayed considerably different activities and selectivities in the hydrogenation of CO when supported on SiO₂ (3). In both of these studies with supported rhodium, the presence of chloride in the sample prepared with RhCl₃ was proposed as the source of the observed differences.

Recent work with SiO₂-supported rhodium has shown that dinuclear surface structures result from the direct vapor deposition of $[Rh(CO)_2Cl]_2$, as well as from reduction of rhodium derived from supported RhCl₃ or Rh(NO₃)₃ (4). When the metal precursor was [Rh(CO)₂Cl]₂, simple physisorption of the molecular complex on SiO₂ appeared to occur. The dinuclear surface species generated from Rh(NO₃)₃/SiO₂ was assigned to an oxide-bridged structure, $[Rh(CO)_2O_s]_2$ (O_s is a surface oxide with net minus one charge), while the nature of the dinuclear species derived from RhCl₃/ SiO₂ was ambiguous, possibly being [Rh $(CO)_2CI]_2$ and/or $[Rh(CO)_2O_s]_2$.

The structure of the $Rh^{I}(CO)_{2}$ surface species is well characterized and has been established to exist as isolated mononuclear Rh^I(CO)₂ units (5–7) at low-to-moderate Rh loading in Rh/Al₂O₃ samples generated from the carbonylation of rhodium salts and from $[Rh(CO)_2Cl]_2$. Recent EXAFS studies on RhCl₃/Al₂O₃ samples indicate that the Rh^I(CO)₂ fragment formed upon carbonylation is bound to the surface by three oxides resulting in a five-coordinate metal center (6). $Rh^{I}(CO)_{2}$ bound to two surface oxides and resulting in a fourcoordinate square planar geometry about

the metal center also has been discussed with respect to samples derived from $[Rh(CO)_2CI]_2/Al_2O_3$ (7). No Rh–Cl interactions have been proposed for Rh^I(CO)_2 species generated from either RhCl₃/Al₂O₃ or $[Rh(CO)_2CI]_2/Al_2O_3$.

Infrared spectroscopy and solvent extraction techniques were used in the present study to gain a more complete understanding of the importance of metal precursor and of chloride incorporation to the nature of the supported rhodium catalysts formed from the rhodium carbonyl dimer and rhodium salts treated under very mild conditions on SiO₂ and Al₂O₃ surfaces.

EXPERIMENTAL

[Rh(CO)₂Cl]₂ was prepared according to the method of McCleverty and Wilkinson with the use of a specially designed reactor (8). The silica was grade EH-5 from Cabot Corp., commonly known as Cab-O-Sil. The alumina was CK-300 γ -Al₂O₃ from Akzo Chemie.

Samples of $RhCl_3/SiO_2$ and $Rh(NO_3)_3/SiO_2$ were prepared by incipient wetness. Silica powder sufficient to yield 1% Rh loadings was added to RhCl₃ and Rh(NO₃)₃ aqueous solutions and the slurries were stirred overnight to dryness.

Wafers suitably thin to record transmission IR spectra were pressed with a stainless-steel die. Pressures of 1500 and 30,000 psi were used for the silica and alumina samples, respectively. The wafers were cut into suitable sizes for use in cells described elsewhere (9). [Rh(CO)₂Cl]₂ was deposited by sublimation onto pure SiO₂ or Al₂O₃ wafers that had been heated to varying temperatures under 10⁻⁵ Torr. Such samples are designated as $[Rh(CO)_2Cl]_2/SiO_2(Al_2O_3)$ hereinafter. Wafers of RhCl₃/SiO₂ and $Rh(NO_3)_3/SiO_2$ were heated to 50°C in 600 Torr CO in the IR cells. These samples are designated RhCl₃/SiO₂ or Rh(NO₃)₃/SiO₂ even after carbonylation.

Metal carbonyl complexes were extracted from the oxide supports within the special cells by mechanically raising the sample to the top of the cell, replacing the cell bottom with a Schlenk solution well (10) containing the extraction solvent, and submerging the sample in the solvent for a minimum of 10 min. The cell was continuously purged with dry N₂ during this procedure. A syringe was used to extract solution from the bottom of the cell to record the infrared solution spectrum. To obtain concentrations sufficient for an IR spectrum, minimal amounts of solvent were used in the Schlenk solution well and additional wafers, present in an auxiliary carriage, were dipped in the solution. The wafers were raised to the top of the cell following the extraction procedure, the Schlenk solution well was replaced by the original cell bottom containing IR windows, and the IR spectrum of the wafer again recorded.

A Nicolet 10-MX Fourier transform infrared spectrometer was used. The typical resolution of IR spectra was 2 cm^{-1} . A scan time of 2 min resulting in a maximum of 54 interferograms was commonly used.

RESULTS

 Rh/SiO_2 . [Rh(CO)₂Cl]₂ was loaded via sublimation onto SiO₂ wafers that had been pressed for transmission infrared measurements and heated at 400°C under vacuum for over 1 h. The silica wafers, while positioned between the IR windows of the cell, were exposed to the [Rh(CO)₂Cl]₂ vapor for 35 min. This procedure provided for monitoring of the ν (OH) IR region during loading, the results of which have been presented elsewhere (4). The amount of rhodium on the surface was estimated to be <1% on the basis of elemental analyses in previous studies and of IR intensities. A typical ν (CO) IR spectrum that results from this preparation is shown in Fig. 1A. (SiO₂) samples prepared at other pretreatment temperatures, 100-800°C, gave results identical to those for the sample pretreated at 400°C.)

Samples of $RhCl_3/SiO_2$ and $Rh(NO_3)_3/SiO_2$ were prepared by incipient wetness.

FIG. 1. Behavior of ν (CO) IR region of SiO₂-supported rhodium upon solvent extraction. The [Rh(CO)₂Cl]₂/SiO₂ sample was prepared as described in the text. Shown are surface IR spectra of [Rh(CO)₂Cl]₂/SiO₂ (A) before and (B) after solvent extraction with pentane. Surface Rh¹(CO)₂ species were also generated from samples of RhCl₃/SiO₂ and Rh(NO₃)₃/SiO₂ as described in the text. Spectra of RhCl₃/SiO₂ sample (C) following treatment with CO and (D) after extraction with pentane. Spectra of Rh(NO₃)₃/SiO₂ sample (E) following treatment with CO and (F) after extraction with pentane.

(1% Rh loading) without prior pretreatment of the support. Pretreatment of the SiO₂ before metal loading, as with the $[Rh(CO)_2Cl]_2/SiO_2$ samples, would be pointless since the water from the aqueous solutions of the rhodium salts would reverse the effects of the procedure. Wafers were pressed and placed in IR cells where they were exposed to 600 Torr CO at 50°C for $\frac{1}{2}$ h and then evacuated. This temperature was sufficient for the reduction of Rh³⁺ ions to Rh(I). Higher temperatures facilitate conversion of rhodium to the zero-valent state. Typical IR spectra obtained in the ν (CO) region are shown in Figs. 1C and 1E.

The spectra obtained for each of the three different preparation methods display one weak and two strong ν (CO) bands. The three-band pattern in each case is strikingly similar to that obtained in the IR spectra of molecular [Rh(CO)₂Cl]₂ (4),

 $[Rh(CO)_2OSiMe_3]_2$, and $[Rh(CO)_2OSiPh_3]_2$ (11), suggesting that these three preparations lead to surface dinuclear structures analogous to the structures of the molecular complexes. The similarity of spectra for the [Rh(CO)₂Cl]₂/SiO₂ sample and molecular $[Rh(CO)_2Cl]_2$, the absence of any gas phase CO, and the previously reported behavior (4) of the ν (OH) IR region during adsorption of the dinuclear complex strongly suggest that the rhodium complex physisorbs on the oxide surface and, therefore, could be extracted from the surface with an appropriate solvent. On the other hand, a surface species of the type $[Rh(CO)_2O_s]_2$, analogous to the silanato-bridged complexes mentioned above, should not be easily extracted from the surface.

Extractions of the surface carbonyl species obtained with each of the three preparations were attempted, using pentane as the solvent. Spectra of the oxide wafers after the extraction procedure are shown in Figs. 1B, 1D, and 1F. Most of the surface rhodium carbonyl was removed from the silica for both the [Rh(CO)₂Cl]₂/SiO₂ and the RhCl₃/SiO₂ samples, while the extraction process did not appear to remove metal carbonyl from the surface of samples generated from the $Rh(NO_3)_3/SiO_2$. Solution IR spectra of the pentane after the extraction procedure for the $[Rh(CO)_2Cl]_2/SiO_2$ and the RhCl₃/SiO₂ gave a ν (CO) spectrum identical with that of molecular $[Rh(CO)_2Cl]_2$ dissolved in pentane, while no ν (CO) bands were present in the pentane after the attempted extraction from Rh (NO₃)₃/SiO₂ wafers, nor was any coloration of the pentane evident in the latter case.

 Rh/Al_2O_3 . The Al₂O₃ was pressed into wafers suitable for transmission infrared measurements and pretreated by heating to 400°C while being evacuated for 1 h. Exposure of pretreated Al₂O₃ to the vapor of [Rh(CO)₂Cl]₂ for 10 min resulted in an IR spectrum with two strong ν (CO) bands (2025 and 2104 cm⁻¹) and a weak shoulder (~2095 cm⁻¹) as shown in Fig. 2B. The two

strong bands are indistinguishable from those reported for $Rh^{I}(CO)_{2}$ species on Al₂O₃ prepared by other means (5-7); the weak shoulder has not been reported previously. The two strong $\nu(CO)$ bands were significantly broader than the ν (CO) bands recorded for [Rh(CO)₂Cl]₂/SiO₂ and [Rh (CO)₂Cl]₂/zeolites even though the percentage loading was approximately the same for all the samples (4). IR spectra were recorded at time intervals after the loading process. The sample remained in the IR beam and was not moved between scans, assuring that the spectra were recorded for the same part of the wafer. The frequencies and intensities of the two strong $\nu(CO)$ bands, presumably due to surface Rh¹(CO)₂ species, were unchanged, while the $\nu(CO)$ band initially evident as a shoulder weakened and vanished within a short period of time. Typical spectra are shown in Figs. 2B and 2C where the shoulder disappeared within 1 h. The initial three-band pattern in the $\nu(CO)$ region also was observed when Al_2O_3 was pretreated at 100, 200, or 800°C,

FIG. 2. Behavior of ν (CO) IR region of [Rh(CO)₂Cl]₂/Al₂O₃. (A) Spectrum of Al₂O₃ background after heating to 400°C for 1 h while evacuating; (B) spectrum immediately after 10 min exposure to [Rh(CO)₂Cl]₂ vapor in a closed cell; (C) spectrum 1 h after exposure to [Rh(CO)₂Cl]₂ vapor in a closed cell.

although the frequencies for the latter sample were shifted upward by $5-8 \text{ cm}^{-1}$ and the sample was blood red in color while all others were gold.

An elemental analysis of a sample pretreated at 200°C showed 0.8% Rh loading and the mole ratio of Rh:Cl was 1:1. Longer exposure times of the pretreated Al₂O₃ to the [Rh(CO)₂Cl]₂ vapor facilitated higher loadings. However, the weak shoulder was no longer observed, possibly due to the breadth of the two intense ν (CO) bands.

DISCUSSION

 Rh/SiO_2 . Extraction experiments established definite differences between the silica-supported Rh samples derived from $[Rh(CO)_2Cl]_2$ or RhCl₃ on the one hand and Rh(NO₃)₃ on the other, even though ν (CO) spectra for all three samples are quite similar. The fact that the extract from the [Rh(CO)₂Cl]₂ and RhCl₃-derived samples is [Rh(CO)₂Cl]₂ suggests (but does not prove) that this is the species on the surface in those cases. This result is expected for $[Rh(CO)_2CI]_2$ sublimed onto SiO₂ because the chemically passive nature of this surface, as reported in many metal carbonyl/ oxide surface studies, usually results in simple physisorption of a metal carbonyl at room temperature. The conversion of $RhCl_3/SiO_2$ to $[Rh(CO)_2Cl]_2/SiO_2$ also is not surprising because the conditions used (50°C and 600 Torr CO) are similar to those used to synthesize the dimer directly from crystalline RhCl₃ \cdot *n*H₂O (8).

The nature of CO-reduced Rh(NO₃)₃/ SiO₂ is less clear. Obviously, there is no Cl present to facilitate conversion to [Rh(CO)₂Cl]₂, but by analogy with oxybridged dimers like [Rh(CO)₂OSiPh₃]₂ it is reasonable to conclude that surface oxides have formed bridges between directly interacting Rh^I(CO)₂ species to form [Rh (CO)₂O₈]₂. Table 1 presents solution IR ν (CO) frequencies of the various bridged rhodium carbonyl dimers for comparison with the spectra of the surface species.

The oxide-bridged surface species has

TABLE I

Carbonyl Frequencies for Oxy-Bridged
Rhodium Species

Sample	$\nu(\mathrm{CO})^{u}~(\mathrm{cm}^{-1})$	Ref.
[Rh(CO) ₂ O ₃] ₂ /SiO ₂ ^b	2039 s, 2098 s, 2109 sh	This work
[Rh(CO) ₂ OSiPh ₃] ₂	2014 s, 2076 s, 2090 m	11
[Rh(CO) ₂ OSiMe ₃] ₂	2009 s, 2072 s, 2088 m	11

^{a 13}CO frequencies are not included.

^b O_s, surface oxide.

been proposed previously for the product of carbonylation of RhCl₃/SiO₂ (12) and for a sample derived from an allylic carbonyl rhodium complex on SiO₂ (13). The ν (CO) band pattern in this study establishes the dinuclear surface structure, but the experimental results suggest a chloride rather than an oxide-bridged structure for the sample derived from RhCl₃/SiO₂.

 Rh/Al_2O_3 . The ν (CO) bands obtained for [Rh(CO)₂Cl]₂/Al₂O₃ do not match those of the parent carbonyl. Indeed, the two strong ν (CO) IR bands that remain after the weak shoulder (2095 cm⁻¹) disappears are indistinguishable from those recorded for Rh^I (CO)₂ on Al₂O₃ generated by a variety of other means in numerous studies (5, 7, 13) and which have been assigned to the symmetric and asymmetric carbonyl stretches of Rh^I(CO)₂ fragments on isolated sites on an Al₂O₃ surface. There are two possible interpretations for the initial three ν (CO)-band pattern.

One possibility—that the three initial $\nu(CO)$ bands arise from one surface complex that converts over time to Rh^I(CO)₂ is dismissed because the intensities and frequencies of the two intense bands (2025 and 2104 cm⁻¹) remain essentially unchanged as the 2095 cm⁻¹ shoulder disappears. This leaves the interpretation in which the two intense bands are due to Rh^I(CO)₂ formed immediately after depositing [Rh(CO)₂Cl]₂, while the shoulder is a second species, perhaps a rhodium monocarbonyl.

The transient monocarbonyl could form on a different Rh oxidation state—perhaps a higher oxidation state not yet reduced to Rh(I). Indeed, bands near 2090 cm^{-1} have been assigned by Scurrell (14) to magnesiasupported [Rh(CO)Cl₅]²⁻. Their frequency is much lower, though, than those reported by Mattera et al., at 2125–2178 cm^{-1} for monocarbonyls of Rh(III) in ionomers (15) or even the 2120 cm⁻¹ frequency observed for CO on Rh(II) ions on surfaces (5). On the other hand the frequency for the transient species is well above the 2060-2075 cm⁻¹ range usually found for monocarbonyls on Rh(0). It is tempting, therefore, to assign the 2095 cm⁻¹ band to a monocarbonyl of Rh(I) since this frequency is intermediate between those commonly reported for single CO oscillators on Rh metal and on Rh(II) or Rh(III).

The formation of the monocarbonyl may be due to a small undetected loss of some CO during the original sublimations of the dimer onto the Al_2O_3 . The monocarbonyls also may occur at sterically crowded sites on the highly porous surface or at locations where Cl occupies one ligand site normally occupied by a CO. At any rate, the monocarbonyl is less stable on the surface than is the dicarbonyl species, as expected from the results of many previous studies of Rh(I) on aluminas.

Previous studies have reported little or no Rh-Cl interactions for Al₂O₃-supported $Rh^{I}(CO)_{2}$ species (6, 7), but the procedure used in the present study to prepare the $[Rh(CO)_2Cl]_2/Al_2O_3$ samples may favor such interactions. (Sample analyses showed that all the Cl was retained in these samples.) The 800°C pretreatment of the Al_2O_3 in the present study creates Lewis acid sites at coordinately unsaturated aluminum atoms. Because [Rh(CO)₂Cl]₂ was loaded by sublimation, no solvent was present to interfere with possible interactions between the molecular complex and such surface Lewis acid sites. Some of the $[Rh(CO)_2Cl]_2$ could adsorb by the formation of Lewis acid/base adducts between the bridging chlorides of the parent complex and the coordinatively unsaturated aluminum atoms. The result would be $Rh^{I}(CO)_{2}$ bound to the surface through Rh–Cl–Al as well as Rh–O–Al interactions. Indeed, the striking color difference when the Al₂O₃ was pretreated at 800°C and the shift in ν (CO) frequencies for that sample, as compared with samples prepared with Al₂O₃ pretreated at lower temperatures, are consistent with the hypothesis that it consisted primarily of [Rh(CO)₂Cl₂]⁻ ions coordinated to the high concentration of Lewis acid surface sites present.

CONCLUSIONS

Under the mild conditions used to treat Rh on SiO₂ in this study, formation of Rh(I) predominates and carbonylation leads primarily to dimeric surface species identical or closely analogous to the chloride-bridged dimer, independent of whether the starting material is $[Rh(CO)_2CI]_2$ or one of the Rh(III) salts. Apparently, the difference between the wet SiO₂ surface, formed by addition of the salts from water solution, and the fully dehydrated and partially dehydroxylated surfaces, upon which the $[Rh(CO)_2CI]_2$ sublimed, was largely irrelevant in determining the nature of the final species formed.

It is significant, though, that when $Rh(NO_3)_3$ was the precursor to supported rhodium, it produced a distinctly different sample, as evidenced by extraction results, even though the $\nu(CO)$ spectra for all three samples were very similar.

The two different species that are obtained, postulated as $[Rh(CO)_2O_s]_2$ and physisorbed $[Rh(CO)_2Cl]_2$, might be expected to display different catalytic properties. First, the different bridging ligands, O_s and Cl, would be expected to have slightly different electronic and steric effects on the metal centers. More importantly, maximum metal dispersion would be expected for $[Rh(CO)_2O_s]_2$ because the bridging ligands between the metal centers are inherent to the surface, while the chloride-bridged $[Rh(CO)_2Cl]_2$ might more readily form three-dimensional aggregates.

Although [Rh(CO)₂Cl]₂ produced Rh¹

 $(CO)_2$ when added to Al_2O_3 , consistent with observations of other workers, a second species, possibly a monocarbonyl, appeared immediately after adding the carbonyl complex. An alumina surface pretreated at 800°C also exhibited behavior toward the dimer that differed from that for all other pretreatments. The fact that the surface is not contaminated by solvent when using this method of catalyst formation and that Cl might be intimately involved at the Rh(I) center on the Al_2O_3 surface may explain these novel observations.

ACKNOWLEDGMENT

The authors acknowledge support from the University of Wisconsin–Milwaukee Laboratory for Surface Studies.

REFERENCES

- Darensbourg, D. J., and Ovalles, C., Inorg. Chem. 25, 1603 (1986).
- Worley, S. D., Rice, C. A., Mattson, G. A., Curtis, C. W., Guin, J. A., and Tarrer, A. R., *J. Phys. Chem.* 76, 20 (1982).
- Orita, H., Naito, S., and Tamaru, K., J. Catal. 90, 183 (1984).
- Keyes, M. P., and Watters, K. L., J. Catal. 100, 477 (1986).
- 5. (a) Rice, C. A., Worley, S. D., Curtis, C. W.,

Guin, J. A., and Tarrer, A. R., J. Chem. Phys. 74, 6487 (1981); (b) Wang, H. P., and Yates, J. T., Jr., J. Catal. 89, 79 (1984); (c) Worley, S. D., Rice, C. A., Mattson, G. A., Curtis, C. W., Guin, J. A., and Tarrer, A. R., J. Phys. Chem. 86, 2714 (1982); (d) Yates, J. T., Jr., and Kolasinski, K., J. Phys. Chem. 79, 1026 (1983).

- Van't Blik, H. F. J., van Zon, J. B. A. D., Huizinga, T., Vis, J. C., Koningsberger, D. C., and Prins, R., J. Amer. Chem. Soc. 107, 3139 (1985).
- 7. Robbins, J. L., J. Phys. Chem. 90, 3381 (1986).
- (a) McCleverty, J. A., and Wilkinson, G., *Inorg.* Synth. 8, 211 (1965); (b) Schneider, R. L., and Watters, K. L., J. Catal. 72, 172 (1981).
- Schneider, R. L., Howe, R. F., and Watters, K. L., *Inorg. Chem.* 23, 4593 (1984).
- Schneider, R. L., Howe, R. F., and Watters, K. L., *Inorg. Chem.* 23, 4600 (1984).
- 11. Vizi-Orosz, A., and Marko, L., *Transition Met. Chem.* 7, 216 (1982).
- (a) Bilhou, J. L., Bilhou-Bougnal, V., Graydon, W. F., Basset, J. M., Smith, A. K., and Zanderighi, G. M., J. Organomet. Chem. 153, 73 (1978); (b) Theolier, A., Smith, A. K., Leconte, M., Bassett, J. M., Zanderighi, G. M., Psaro, R., and Ugo, R., J. Organomet. Chem. 191, 415 (1980).
- McNulty, G. S., Cannon, K., and Schwartz, J., Inorg. Chem. 25, 2919 (1986).
- 14. Scurrell, M. S., J. Mol. Catal. 10, 57 (1981).
- Mattera, V. D., Squattrito, P. J., and Risen, W. M., Inorg. Chem. 23, 3597 (1984).